

Home Search Collections Journals About Contact us My IOPscience

Crystal-field analysis of Eu^{3+} in LiYF₄

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1993 J. Phys.: Condens. Matter 5 8359

(http://iopscience.iop.org/0953-8984/5/44/023)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.96 The article was downloaded on 11/05/2010 at 02:11

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 5 (1993) 8359-8374. Printed in the UK

Crystal-field analysis of Eu³⁺ in LiYF₄

C Görller-Walrand, K Binnemans and L Fluyt

University of Leuven, Laboratory of Inorganic Chemistry, Celestijnenlaan 200F, 3001 Heverlee, Belgium

Received 6 July 1993

Abstract. Polarized absorption spectra of Eu^{3+} in single-crystal LiYF₄ have been recorded at 298 K and 77 K in the region from 3900–39000 cm⁻¹. Symmetry assignments have been made in both D_{2d} and S₄. Calculated energy levels are obtained by diagonalizing a parametric Hamiltonian that describes the free-ion and crystal-field interactions in a basis of states spanning the 4f⁶ electronic configuration of Eu^{3+} . J mixing was taken into account.

1. Introduction

Lithium yttrium fluoride, LiYF₄, is an attractive host crystal for the spectroscopic investigation of triply ionized lanthanide ions in crystal fields. Because Ln^{3+} can replace Y^{3+} at the same site, no charge compensation is required. Crystals of LiYF₄ are transparent over a wide spectral region from about 220 nm in the UV to 8 μ m in the IR [1]. They are stable against air and moisture. The spectroscopic properties of LiYF₄ doped with Ln^{3+} ions have been reviewed by Morrison and Leavitt [2] and by Jayasankar *et al* [3].

Eu³⁺-doped LiYF₄ was not investigated until 1985 [4], because of the difficulties in growing LiYF₄:Eu³⁺ single crystals of a reasonable size. The spectroscopic properties of Eu³⁺ in LiYF₄ in the region from 0 to 19 040 cm⁻¹ were first determined by our group [4, 5] using fluorescence data. Bihari *et al* [6] extended this work and recorded the absorption spectra up to 25 500 cm⁻¹.

This investigation of LiYF₄:Eu³⁺ provides an extension of the energy identification. Location and assignments of 120 crystal-field levels are reported. These levels span the 0-39 000 cm⁻¹ energy region and belong to 36 different *SLJ* multiplet manifolds of the 4f⁶ electronic configuration of Eu³⁺. The data were obtained from optical absorption and fluorescence spectra at 298 K and 77 K. Crystal-field matrices are diagonalized both in D_{2d} and S₄ symmetry using a parametric Hamiltonian.

2. Experimental details

Crystals of LiYF₄ doped with Eu³⁺ were grown by spontaneous nucleation in the melt [4, 7]. The doping concentration is about 5 mol%. Samples were oriented by Laue photography and cut in such a way that the crystallographic c axis is perpendicular to two of the faces (for α spectra) or parallel (for σ and π spectra). The faces were optically polished. The crystal thickness and thus the optical path length was 1.5 mm. The fluorescence measurements are described elsewhere [4].

Optical aborption spectra were recorded using an AVIV 17DS spectrophotometer. In the visible and UV regions the instrument has a wavelength resolution better than 0.1 nm. In the

IR region the wavelength resolution is 0.3 nm. The wavelength accuracy is approximately ± 0.4 nm. Light polarization is achieved by a Glan-Thompson polarizer. For low-temperature measurements the sample is cooled in an optical Dewar (Oxford Instruments) filled with liquid nitrogen (77 K).

3. Structure and symmetry of the coordination polyhedron

The existence of LiYF₄ was first reported in 1961 by Thoma *et al* [8]. LiYF₄ crystallizes in the tetragonal scheelite (CaWO₄) structure, which belongs to space group C⁶_{4h} (*I*4₁/*a*) [9]. With respect to scheelite, in LiYF₄, Y is at the Ca site, Li is at the W site and F is at the O site. Although Y³⁺ can be totally exchanged by Ln³⁺ (Ln³⁺ = Gd³⁺-Lu³⁺), Eu³⁺ can only partially substitute for Y³⁺ in single crystals. This is due to the difference in ionic radius between Eu³⁺ and Y³⁺. Each Y³⁺ (or Eu³⁺) is dodecahedrally surrounded by eight F⁻ ions. The point symmetry of such a dodecahedron is D_{2d}. In LiYF₄ the actual site symmetry at the rare-earth ion is not D_{2d}, but S₄ [10, 11]. This symmetry lowering is caused by a slight distortion of the dodecahedron. The distortion angle $\Delta \varphi$ is 2.29°. As this angle is small, the D_{2d} symmetry remains a good approximation for the S₄ symmetry.

4. Spectroscopic assignments and selection rules

The crystal-field levels are assigned both in D_{2d} and S_4 symmetry (S_4 is a subgroup of D_{2d}). The irreducible representations are labelled according to the Koster notations [12]: Γ_1 , Γ_2 , Γ_3 , Γ_4 and Γ_5 for D_{2d} , Γ_1 , Γ_2 , Γ_3 and Γ_4 for S_4 . As Γ_3 and Γ_4 are related in S_4 by time-reversal symmetry and degenerated in the absence of a magnetic field, they are designated $\Gamma_{3,4}$. A comparison between the irreducible representations of D_{2d} and S_4 , as well as the splitting of the J terms in those crystal fields, can be found in [12].

The assignments are based on the polarization characteristics of the transitions and the selection rules for electric dipole (ED) and magnetic dipole (MD) transitions (table 1). α , π and σ are defined in the usual manner: α spectrum, $c \parallel z$; π spectrum, $c \perp z$, $E \parallel c$; σ spectrum, $c \perp z$, $H \parallel c$, with z the propagation direction of the light and c the main crystal axis. E and H are the electric and magnetic field vectors of the incident light, respectively.

			ED					MD		
D _{2d}	Γ_1	Γz	Γ_3	Γ4	Γ5	Γ_1	Г2	Гз	Γ4	Г5
Г1	_	_	_	π	σ,α		σ		-	π, α
Γ2	<u> </u>	—	π		σ, α	σ		—	·	$\pi, lpha$
Гз	—	π		<u> </u>	σ, α	—			σ	π, α
Γ4	π	<u> </u>	—	— .	σ,α	<u> </u>	·· ·· ······	σ	<u> </u>	π,α
Γ_5	σ, α	σ,α	σ, α	σα	π	π,α	π,α	π, α	π, α	π, α
			ED					MD		
S4	Γ1		Γ_2		Г3,4	Г		Γ_2		Г _{3,4}
Γι			π		σ, α	σ				π,α
Γ_2	÷		—		σ, α	_		σ		π, α
Γ3.4	σ, α		σ, α		π	π.α		π.α		σ

Table 1. Selection rules for induced ED and MD transitions in D_{2d} and S₄ symmetry.

5. Theoretical calculations

The energy levels of Eu³⁺ were analysed in terms of a parametric Hamiltonian [13, 14]:

$$H = H_0 + \sum_{k} F^k f_k + \zeta_{nl} A_{SO} + \alpha L(L+1) + \beta G(G_2) + \gamma G(R_7) + \sum_{i} T^i t_i + \sum_{k} P^k p_k + \sum_{k} M^k m_k + H_{CF}.$$
 (1)

 H_0 involves the kinetic energy of the electrons and their interaction with the nucleus. It is the spherically symmetric one-electron part of the free-ion Hamiltonian and it shifts the energy of the entire $4f^N$ configuration (N = 6 for Eu^{3+}) alone. F^k (k = 2, 4, 6) are electron repulsion parameters and ζ_{nl} is the spin-orbit coupling constant. f_k and A_{SO} represent the angular parts of the electrostatic and spin-orbit interactions respectively. The parameters describing the two-body interaction are α , β and γ . $G(G_2)$ and $G(R_7)$ are the Casimir operators for the groups G_2 and R_7 , and L is the total orbital angular momentum. They represent effects that do not transform as the f_k . The three-particle configuration interaction is represented by $T^i t_i$ (i = 2, 3, 4, 6, 7, 8). T^i are the parameters and t_i the three-particle operators. Magnetically correlated corrections (spin-spin and spin-other-orbit relativistic corrections) are introduced by the Marvin integrals M^k (k = 0, 2, 4). The P^k parameters (k = 2, 4, 6) describe the two-body magnetic corrections (the most important is the electrostatically correlated spin-orbit perturbation). The free-ion part of the Hamiltonian incorporates 20 parameters.

The crystal-field part of the Hamiltonian (H_{CF}) is given in the formalism of Wybourne [15] by

$$H_{\rm CF} = \sum_{i=0}^{N} \sum_{k=0}^{\infty} \sum_{q=-k}^{k} B_{q}^{k} C_{q}^{k}(i).$$
⁽²⁾

 $C_q^k(i)$ is a spherical tensor of rank k, with components q. B_q^k are the crystal-field parameters. N is the number of electrons and i represents the *i*th electron. For f electrons $k \leq 6$. The expansion of the crystal-field Hamiltonian is symmetry dependent. According to the conventions of Koster [12], in which the x and y axes are parallel to the twofold C'_2 -axes, H_{CF} is expanded in D_{2d} and S_4 as

$$H_{D_{2d}}^{\text{even}} = B_0^2 C_0^2 + B_0^4 C_0^4 + B_4^4 (C_{-4}^4 + C_4^4) + B_0^6 C_0^6 + B_4^6 (C_{-4}^6 + C_4^6)$$
(3)

$$H_{S_4}^{\text{even}} = H_{D_{2d}}^{\text{even}} + iB_4^4(C_{-4}^4 - C_4^4) + iB_4^6(C_{-4}^6 - C_4^6).$$
(4)

Only the even terms have to be considered for the splitting of the levels under the crystal field, because the odd parts are zero within one configuration. If the σ_d mirror planes were chosen to be parallel to the x and y axes, the parameters B_4^4 and B_4^6 would have the opposite sign.

The two additional imaginary parameters iB_4^4 and iB_4^6 resulting from the slight distortion of the D_{2d} symmetry are not expected to be able to cause great energy shifts.

No axis rotation has been introduced to make one of the even k imaginary parameters (often iB_4^4) equal to zero. It was our opinion that in view of future intensity calculations it is more convenient to make one of the odd k imaginary parameters (iB_2^3) zero. Five crystal-field parameters have to be considered in D_{2d} and seven parameters in S₄. In combination with the free-ion parameters, the total number of parameters is 25 for D_{2d} and 27 for S₄.

C Görller-Walrand et al

Energy			Identification	Identification
(cm^{-1})	Transition	Polarization	(D ₂₄)	(S ₄)
3998	$^{7}F_{5} \leftarrow ^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_{\epsilon}^{b} \leftarrow \Gamma_{1}$	$\Gamma_{3,4}^{b} \leftarrow \Gamma_{1}$
4050	${}^{7}F_{5} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_2^{\circ} \leftarrow \Gamma_1$	$\Gamma_{3A}^{c} \leftarrow \Gamma_{1}$
4699	${}^{7}F_{6} \leftarrow {}^{7}F_{1}$	$\alpha + \sigma$	$\Gamma_{2}^{c} \leftarrow \Gamma_{2}$	$\Gamma_{2,4}^{c} \leftarrow \Gamma_{1}$
4880	$7_{\rm E_{c}} \leftarrow 7_{\rm E_{0}}$	7	$\Gamma^a \leftarrow \Gamma_i$	$\Gamma_{a}^{a} \leftarrow \Gamma_{a}$
4890	${}^{7}F_{6} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma^{a} \leftarrow \Gamma_{1}$	$\Gamma_a^a \leftarrow \Gamma_i$
5076	$7_{\rm E_{\ell}} \leftarrow 7_{\rm E_{0}}$	$\alpha \pm \alpha$	$\Gamma^{c} \leftarrow \Gamma_{1}$	$\Gamma_{a}^{c} \leftarrow \Gamma_{1}$
16842	${}^{5}D_{2} \leftarrow {}^{7}E_{2}$	a , c	т <u>с</u> - Го	- 3,4 · - 1 Γι - Γι
16034	$5D_0 \leftarrow 7E_1$	م ۲ س	$\Gamma_1 \leftarrow \Gamma_2$	$\Gamma_1 \leftarrow \Gamma_2$
18 570	${}^{5}D_{1} \leftarrow {}^{7}F_{1}$	$\alpha + \sigma$	$\Gamma_{\epsilon} \leftarrow \Gamma_{2}$	$\Gamma_{34} \leftarrow \Gamma_1$
18 676	${}^{5}D_{1} \leftarrow {}^{7}F_{1}$	π	$\Gamma_{\varsigma} \leftarrow \Gamma_{\varsigma}$	$\Gamma_{3,4} \leftarrow \Gamma_{3,4}$
18 707	${}^{5}D_{1} \leftarrow {}^{7}F_{1}$	$\alpha + \sigma$	$\Gamma_2 \leftarrow \Gamma_5$	$\Gamma_1 \leftarrow \Gamma_{3,4}$
19018	${}^{5}D_{1} \leftarrow {}^{7}F_{0}$	$\alpha + \pi$	$\Gamma_5 \leftarrow \Gamma_1$	$\Gamma_{3,4} \leftarrow \Gamma_1$
19 040	${}^{5}D_{1} \leftarrow {}^{7}F_{0}$	σ	$\Gamma_2 \leftarrow \Gamma_1$	$\Gamma_1 \leftarrow \Gamma_1$
21 070	${}^{5}D_{2} \leftarrow {}^{7}F_{1}$	σ	$\Gamma_1 \leftarrow \Gamma_2$	$\Gamma_1 \leftarrow \Gamma_1$
21 129	${}^{5}D_{2} \leftarrow {}^{7}F_{1}$	$\alpha + \sigma$	$\Gamma_1 \leftarrow \Gamma_5$	$\Gamma_1 \leftarrow \Gamma_{3,4}$
21 156	${}^{5}D_{2} \leftarrow {}^{7}F_{1}$	$\alpha + \sigma$	$\Gamma_3 \leftarrow \Gamma_5$	$\Gamma_2^a \leftarrow \Gamma_{3,4}$
21 176	${}^{5}D_{2} \leftarrow {}^{7}F_{1}$	$\sigma + \pi$	$\Gamma_5 \leftarrow \Gamma_5$	$\Gamma_{3,4} \leftarrow \Gamma_{3,4}$
21 207	${}^{5}D_{2} \leftarrow {}^{7}F_{1}$	$\alpha + \pi$	$\Gamma_4 \leftarrow \Gamma_5$	$\Gamma_2^b \leftarrow \Gamma_{3,4}$
21 444	${}^{5}D_{2} \leftarrow {}^{7}F_{0}$	π	$\Gamma_3 \leftarrow \Gamma_1$	$\Gamma_2^a \leftarrow \Gamma_1$
21 515	${}^{5}D_{2} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5 \leftarrow \Gamma_1$	$\Gamma_{3,4} \leftarrow \Gamma_1$
21 540	${}^{5}D_{2} \leftarrow {}^{7}F_{0}$	π	$\Gamma_4 \leftarrow \Gamma_1$	$\Gamma_2^b \leftarrow \Gamma_1$
23 921	${}^{5}D_{3} \leftarrow {}^{7}F_{1}$	π+σ+α	$\Gamma_3 \leftarrow \Gamma_2$	$\Gamma_2^a \leftarrow \Gamma_1$
23 981	${}^{5}D_{3} \leftarrow {}^{7}F_{1}$	$\alpha + \sigma$	$\Gamma_5^{b} \leftarrow \Gamma_2$	$\Gamma_{3,4}^{b} \leftarrow \Gamma_{1}$
23 986	${}^{5}D_{3} \leftarrow {}^{7}F_{1}$	π	$\Gamma_5^a \leftarrow \Gamma_5$	$\Gamma^{a}_{3,4} \leftarrow \Gamma_{3,4}$
24015	${}^{5}D_{3} \leftarrow {}^{7}F_{1}$	$\alpha + \sigma$	$\Gamma_2 \leftarrow \Gamma_5$	$\Gamma_1 \leftarrow \Gamma_{3,4}$
24 038	${}^{5}D_{3} \leftarrow {}^{7}F_{1}$	$\alpha + \sigma$	$\Gamma_4 \leftarrow \Gamma_5$	$\Gamma_2^a \leftarrow \Gamma_{3,4}$
24 077	${}^{5}D_{3} \leftarrow {}^{7}F_{1}$	π	Г <mark></mark> ^b ← Г5	$\Gamma^{b}_{3,4} \leftarrow \Gamma_{3,4}$
24 500	${}^{5}L_{6} \leftarrow {}^{7}F_{1}$	π	$\Gamma_3^a \leftarrow \Gamma_2$	$\Gamma_2^a \leftarrow \Gamma_1$
24 5 1 3	${}^{5}L_{6} \leftarrow {}^{7}F_{1}$	$\alpha + \sigma$	$\Gamma_5^{\tilde{a}} \leftarrow \Gamma_2$	$\Gamma_{3,4}^{a} \leftarrow \Gamma_{1}$
24 596	${}^{5}L_{6} \leftarrow {}^{7}F_{1}$	π	$\Gamma_5^a \leftarrow \Gamma_5$	$\Gamma_{3,4}^{a} \leftarrow \Gamma_{3,4}$
24 597	${}^{5}L_{6} \leftarrow {}^{7}F_{1}$	$\alpha + \sigma$	$\Gamma_3^2 \leftarrow \Gamma_5$	$\Gamma_2^3 \leftarrow \Gamma_{3,4}$
24 937	${}^{5}L_{6} \leftarrow {}^{7}F_{0}$	α+σ	$\Gamma_{\xi}^{a} \leftarrow \Gamma_{I}$	$\Gamma_{34}^{\hat{a}} \leftarrow \Gamma_1$
24 947	${}^{5}L_{6} \leftarrow {}^{7}F_{1}$	$\alpha + \sigma$	$\Gamma_2 \leftarrow \Gamma_3$	$\Gamma_1^b \leftarrow \Gamma_{34}$
25 078	${}^{5}L_{6} \leftarrow {}^{7}F_{1}$	$\alpha + \sigma$	$\Gamma^{b} \leftarrow \Gamma_{s}$	$\Gamma_{1}^{c} \leftarrow \Gamma_{3,4}$
25225	⁵ L₄ ← ⁷ Eo	$\alpha + \sigma$	$\Gamma^{b} \leftarrow \Gamma_{1}$	$\Gamma_{a}^{b} \leftarrow \Gamma_{a}$
25 405	51 ~ 7Fo	н, - т	- у г ⁶ ← Г	$\Gamma^{q} \leftarrow \Gamma$
25407	$5L_{c} \leftarrow 7E_{0}$	$\alpha + \alpha$	$\Gamma_{2}^{q} \leftarrow \Gamma_{1}$	$\Gamma_2^{\circ} \leftarrow \Gamma_1$
25 985	$5_{G_2} \leftarrow 7_{F_1}$	π	$\Gamma_2 \leftarrow \Gamma_2$	$\Gamma_{3,4}^{a} \leftarrow \Gamma_{1}$
25 990	${}^{5}L_{7} \leftarrow {}^{7}F_{0}$	π	$\Gamma^{2} \leftarrow \Gamma_{1}$	$\Gamma_{a}^{a} \leftarrow \Gamma_{1}$
25 990	${}^{5}L_{7} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_{a}^{a} \leftarrow \Gamma_{1}$	$\Gamma_{74}^{a} \leftarrow \Gamma_{1}$
26.050	51 ⁷ Fo	$\alpha + \alpha$	Γ ⁰ ← Γι	$\Gamma_{a}^{b} \leftarrow \Gamma_{a}$
26 0 5 5	$5I = \sqrt{7E_0}$	ано 	г <u>5 ч г</u>	3,4 ¹ Г [¢] ∠ Г.
26 194	$5G_{2} \leftarrow 7F_{2}$	α+α	-4 `-1 Γε ← Γι	*2 ⁻ *1 Γ₂₄ ← Γ₁
26221	$5_{G_5} \leftarrow {}^7F_1$	$\alpha + \sigma$	$\Gamma^a \leftarrow \Gamma_c$	$\Gamma_{2}^{a} \leftarrow \Gamma_{2}$
26304	${}^{5}L_{7} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	Γ [°] ← Γι	$\Gamma_{s_1}^{\varsigma} \leftarrow \Gamma_{s_1}$
26373	$5I_{7} \leftarrow 7F_{0}$	$\alpha + \sigma$	Γ ⁴ ← Γ	ς, 4 Γ ^α , 4 Γι
26205	5 _{C2} , 7 _E .	~ . · ·	-5 · -1 Γ. ∠ Γ.	34 ¹ Γ₫∠_Γ
26 415	$G_6 \leftarrow T_{F_0}$	u T V 7	$13 \leftarrow 12$ $\Gamma_2 \leftarrow \Gamma_2$	Γ_2^{-1}
20412	$5_{C_{1}} \neq 7_{\overline{E}}$	м±	13 \ 11 F1 <u>-</u> F.	3,4 - 1 F ^a <u>-</u> F.
20423	03 - 10	4 T V	15 - 1[3,4 1

.

Crystal-field analysis of Eu^{3+} in LiYF4

Table	2.	(continued)
-------	----	-------------

Energy			Identification	Identification
(cm^{-1})	Transition	Polarization	(D _{2d})	(S4)
26531	${}^{5}G_{3} \leftarrow {}^{7}F_{0}$	α+σ	$\Gamma_{5}^{b} \leftarrow \Gamma_{1}$	$\Gamma_{14}^{c} \leftarrow \Gamma_{1}$
26 567	${}^{5}G_{6} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5^a \leftarrow \Gamma_1$	$\Gamma_{34}^a \leftarrow \Gamma_1$
26 598	${}^{5}G_{5} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_{\xi}^{\tilde{b}} \leftarrow \Gamma_{1}$	$\Gamma_{3,4}^{b} \leftarrow \Gamma_{1}$
26 631	${}^{5}G_{6} \leftarrow {}^{7}F_{0}$	π	$\Gamma_4^c \leftarrow \Gamma_1$	$\Gamma_2^6 \leftarrow \Gamma_1$
26651	${}^{5}G_{6} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_{5}^{b} \leftarrow \Gamma_{1}$	$\Gamma_{3,4}^{\overline{b}} \leftarrow \Gamma_1$
26734	${}^{5}G_{6} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_{\xi}^{c} \leftarrow \Gamma_{1}$	$\Gamma_{1A}^{c} \leftarrow \Gamma_{I}$
26786	${}^{5}G_{4} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_{\xi}^{b} \leftarrow \Gamma_{1}$	$\Gamma_{1}^{b} \leftarrow \Gamma_{1}$
27 183	${}^{5}L_{8} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_{\xi}^{b} \leftarrow \Gamma_{1}$	$\Gamma_{34}^{b} \leftarrow \Gamma_{1}$
27251	${}^{5}D_{4} \leftarrow {}^{7}F_{1}$	$\alpha + \sigma$	$\Gamma_1^a \leftarrow \Gamma_5$	$\Gamma_1^a \leftarrow \Gamma_{3,4}$
27261	${}^{5}L_{8} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5^{\hat{e}} \leftarrow \Gamma_1$	$\Gamma_{3,4}^{c} \leftarrow \Gamma_{1}$
27264	${}^{5}D_{4} \leftarrow {}^{7}F_{1}$	π	$\Gamma_5^b \leftarrow \Gamma_5$	$\Gamma_{3,4}^{b} \leftarrow \Gamma_{3,4}$
27 290	${}^{5}D_{4} \leftarrow {}^{7}F_{1}$	$\alpha + \sigma$	$\Gamma_2 \leftarrow \Gamma_5$	$\Gamma_1^b \leftarrow \Gamma_{3,4}$
27 291	${}^{5}\mathbf{D}_{4} \leftarrow {}^{7}\mathbf{F}_{1}$	π	$\Gamma_5^a \leftarrow \Gamma_5$	$\Gamma_{3,4}^{a} \leftarrow \Gamma_{3,4}$
27 605	${}^{5}D_{4} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5^a \leftarrow \Gamma_1$	$\Gamma^a_{3,4} \leftarrow \Gamma_1$
27 630	${}^{5}D_{4} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5^b \leftarrow \Gamma_1$	$\Gamma^{\rm b}_{3,4} \leftarrow \Gamma_1$
27 623	$_{-5}^{5}D_{4} \leftarrow {}^{7}F_{0}$	π	$\Gamma_4 \leftarrow \Gamma_1$	$\Gamma_2^b \leftarrow \Gamma_1$
27 651	${}^{5}L_{9} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5^a \leftarrow \Gamma_1$	$\Gamma^{a}_{3,4} \leftarrow \Gamma_{1}$
27682	${}^{5}L_{9} \leftarrow {}^{7}F_{0}$	π	$\Gamma_4^a \leftarrow \Gamma_1$	$\Gamma_2^a \leftarrow \Gamma_1$
27 789	${}^{5}L_{9} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5^{b} \leftarrow \Gamma_1$	$\Gamma_{3,4}^{b} \leftarrow \Gamma_{1}$
28 023	$^{5}L_{9} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	· Γ ^b ₅ ← Γ ₁	$\Gamma_{3,4}^{b} \leftarrow \Gamma_{1}$
28411	${}^{5}L_{10} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5^b \leftarrow \Gamma_1$	$\Gamma_{3,4}^{b} \leftarrow \Gamma_{1}$
30 4 7 9	${}^{5}\text{H}_{7} \leftarrow {}^{7}\text{F}_{1}$	$\alpha + \sigma$	$\Gamma_2^a \leftarrow \Gamma_5$	$\Gamma_1^{\mathrm{a}} \leftarrow \Gamma_{3,4}$
30 497	${}^{5}\mathrm{H}_{3} \leftarrow {}^{7}\mathrm{F}_{1}$	π	$\Gamma_5^b \leftarrow \Gamma_5$	$\Gamma^{\rm b}_{3,4} \leftarrow \Gamma_{3,4}$
30 563	${}^{5}\text{H}_{7} \leftarrow {}^{7}\text{F}_{1}$	$\alpha + \sigma$	$\Gamma_1 \leftarrow \Gamma_5$	$\Gamma_1^b \leftarrow \Gamma_{3,4}$
30 564	${}^{5}\mathrm{H}_{7} \leftarrow {}^{7}\mathrm{F}_{1}$	π	$\Gamma_5^b \leftarrow \Gamma_5$	$\Gamma^{b}_{3,4} \leftarrow \Gamma_{3,4}$
30 659	${}^{5}\mathrm{H}_{7} \leftarrow {}^{7}\mathrm{F}_{\mathrm{I}}$	$\alpha + \sigma$	$\Gamma_3^b \leftarrow \Gamma_5$	$\Gamma_2^d \leftarrow \Gamma_{3,4}$
30 898	${}^{5}\mathrm{H}_{7} \leftarrow {}^{7}\mathrm{F}_{0}$	$\alpha + \sigma$	$\Gamma_5^b \leftarrow \Gamma_1$	$\Gamma_{3,4}^{b} \leftarrow \Gamma_{1}$
30 949	${}^{5}\mathrm{H}_{7} \leftarrow {}^{7}\mathrm{F}_{0}$	π	$\Gamma_4^a \leftarrow \Gamma_1$	$\Gamma_2^c \leftarrow \Gamma_1$
31 169	${}^{5}\mathrm{H}_{7} \leftarrow {}^{7}\mathrm{F}_{0}$	$\alpha + \sigma$	$\Gamma_5^d \leftarrow \Gamma_1$	$\Gamma^d_{3,4} \leftarrow \Gamma_1$
31 177	${}^{5}\mathrm{H}_{4} \leftarrow {}^{7}\mathrm{F}_{0}$	π	$\Gamma_4 \leftarrow \Gamma_1$	$\Gamma_2^a \leftarrow \Gamma_1$
31 261	${}^{5}\mathrm{H}_{4} \leftarrow {}^{7}\mathrm{F}_{0}$	$\alpha + \sigma$	$\Gamma_5^b \leftarrow \Gamma_1$	$\Gamma_{3,4}^{b} \leftarrow \Gamma_{1}$
31 358	${}^{5}\text{H}_{6} \leftarrow {}^{7}\text{F}_{0}$	$\alpha + \sigma$	$\Gamma_5^a \leftarrow \Gamma_1$	$\Gamma_{3,4}^{a} \leftarrow \Gamma_{1}$
31 403	${}^{5}\text{H}_{5} \leftarrow {}^{7}\text{F}_{0}$	$\alpha + \sigma$	$\Gamma_5^b \leftarrow \Gamma_1$	Г <mark>5</mark> ,4 ← Г1
31 550	${}^{5}\text{H}_{5} \leftarrow {}^{7}\text{F}_{0}$	$\alpha + \sigma$	Γ ^c ₅ ← Γι	$\Gamma_{3,4}^{c} \leftarrow \Gamma_{1}$
31 608	${}^{5}\mathrm{H}_{6} \leftarrow {}^{7}\mathrm{F}_{0}$	$\alpha + \sigma$	$\Gamma_5^c \leftarrow \Gamma_1$	$\Gamma_{3,4}^{c} \leftarrow \Gamma_{1}$
32.778	${}^{5}\mathbf{F}_{3} \leftarrow {}^{7}\mathbf{F}_{1}$	π	$\Gamma_4 \leftarrow \Gamma_5$	$\Gamma_2^b \leftarrow \Gamma_{3,4}$
32.936	${}^{5}\mathbf{F}_{1} \leftarrow {}^{7}\mathbf{F}_{1}$	$\alpha + \sigma$	$\Gamma_2 \leftarrow \Gamma_5$	$\Gamma_1 \leftarrow \Gamma_{3,4}$
32,967	${}^{3}\mathbf{F}_{1} \leftarrow {}^{7}\mathbf{F}_{1}$	π	$1_5 \leftarrow 1_5$	$13,4 \leftarrow 13,4$
33 020	${}^{2}F_{3} \leftarrow {}^{2}F_{0}$	$\alpha + \sigma$	$\Gamma_5^{\circ} \leftarrow \Gamma_1$	$\Gamma_{3,4} \leftarrow \Gamma_1$
33 102	${}^{2}F_{3} \leftarrow {}^{7}F_{0}$	π	$\Gamma_4 \leftarrow \Gamma_1$	$\Gamma_2 \leftarrow \Gamma_1$
53512- 22517	-r₄ ← 'r₀ 5π. ∠ 7π.	π α±σ	14 ← 11 Γ ² ← Γ	$\Gamma_2^{a} \leftarrow \Gamma_1$
33317	5E. 7E.	α+0 α+σ	$\Gamma_5 - \Gamma_1$	$\Gamma_{3,4} \leftarrow \Gamma_{1}$
22 003	5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -		rb . r.	-3,4 - I
22 057	$r_5 \leftarrow r_0$	u+σ	15 - 11 P ⁶ - P	$r_{3,4} \leftarrow r_{1}$
22 020	$r_5 \leftarrow r_0$	u+0	$r_5 \leftarrow r_1$	$r_{3,4}$ r_{1}
21 010	51 712	u + 0	15 - 11	· 3,4 1 го г.
54019	-14 ← P0	a + o	15 - 11	* <u>3,4</u> * 1

Energy (cm ⁻¹)	Transition	Polarization	Identification (D _{2d})	Identification (S ₄)	
34252	${}^{5}I_{5} \leftarrow {}^{7}F_{0}$	α+σ	$\Gamma_5^a \leftarrow \Gamma_1$	$\Gamma_{3,4}^a \leftarrow \Gamma_1$	
34793	${}^{5}I_{8} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5^b \leftarrow \Gamma_1$	$\Gamma_{3,4}^{b} \leftarrow \Gamma_{1}$	
34 829	${}^{5}I_{6} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5^a \leftarrow \Gamma_1$	$\Gamma_{3,4}^{4} \leftarrow \Gamma_{1}$	
34 865	${}^{5}I_{6} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5^b \leftarrow \Gamma_1$	$\Gamma_{3,4}^{b} \leftarrow \Gamma_{1}$	
34877	${}^{5}I_{6} \leftarrow {}^{7}F_{0}$	π	$\Gamma_3^a \leftarrow \Gamma_1$	$\Gamma_2^b \leftarrow \Gamma_1$	
34 922	${}^{5}I_{8} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	Γš ↔ Γι	$\Gamma_{3,4}^{\tilde{c}} \leftarrow \Gamma_1$	
35 027	${}^{5}I_{6} \leftarrow {}^{7}F_{0}$	π	$\Gamma_3^b \leftarrow \Gamma_1$	$\Gamma_2^d \leftarrow \Gamma_1$	
36113	${}^{5}K_{5} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5^{b} \leftarrow \Gamma_1$	$\Gamma_{3.4}^{b} \leftarrow \Gamma_{1}$	
37 283	${}^{5}K_{6} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5^b \leftarrow \Gamma_1$	$\Gamma_{3,4}^b \leftarrow \Gamma_1$	
37 327	${}^{5}K_{6} \leftarrow {}^{7}F_{0}$	π	$\Gamma_4 \leftarrow \Gamma_1$	$\Gamma_2^d \leftarrow \Gamma_1$	
37 355	⁵ K ₆ ← ⁷ F ₀	$\alpha + \sigma$	$\Gamma_5^c \leftarrow \Gamma_1$	Γ _{3,4} ← Γι	
38 209	${}^{5}K_{7} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5^c \leftarrow \Gamma_1$	$\Gamma_{3,4}^{c} \leftarrow \Gamma_{1}$	
38216	${}^{5}K_{7} \leftarrow {}^{7}F_{0}$	π	$\Gamma_4 \leftarrow \Gamma_1$	$\Gamma_2 \leftarrow \Gamma_1$	
38 267	${}^{5}K_{7} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5^d \leftarrow \Gamma_1$	$\Gamma_{3,4}^{d} \leftarrow \Gamma_{1}$	
38 558	${}^{5}K_{8} \leftarrow {}^{7}F_{0}$	$\alpha + \sigma$	$\Gamma_5^a \leftarrow \Gamma_1$	$\Gamma^{a}_{3.4} \leftarrow \Gamma_{1}$	
38 559	${}^{5}K_{8} \leftarrow {}^{7}F_{0}$	π	$\Gamma_3 \leftarrow \Gamma_1$	$\Gamma_2 \leftarrow \Gamma_1$	
					1

	_			
Table	2	(cont	(houri	
		10010		

Calculated values of the crystal-field levels are found by diagonalizing the matrix formed by the action of the total Hamiltonian on the unperturbed wavefunctions.

Due to the degeneracy of the 4f⁶ configuration (3003), a 3003 × 3003 matrix has to be diagonalized. Fortunately the complete crystal-field matrix can be split into four submatrices, corresponding to four crystal quantum numbers ($\mu = 0, \pm 1, 2$). The dimensions of these matrices are further reduced to about 260 by truncating all energy levels above 50 000 cm⁻¹. Because no experimental data above 40 000 cm⁻¹ were available, it was necessary to assume that the truncated levels do not have an appreciable influence on the underlying levels. The starting parameters are optimized in a least-squares fit to a set of experimental ly determined energy levels. The root mean square deviation σ between the experimental and calculated energy level values was used as a figure of merit to describe the quality of a fit.

$$\sigma = \sqrt{\sum (E_{\rm exp} - E_{\rm calc})^2 / (N - P)}$$
⁽⁵⁾

where E_{exp} is the experimental energy value, E_{calc} the calculated energy, N the number of levels that was used in the fit and P the number of variable parameters.

6. Experimental results

The absorption spectra were recorded at 298 K and 77 K in the spectral interval 3900– 39 000 cm⁻¹ (figures 1-3). The lines are not much broader at room temperature than at 77 K, but they are weaker due to the depopulation of the ground state. At 77 K only the ⁷F₀ level is populated. At room temperature, transitions can also take place from the ⁷F₁ level, so additional lines are expected. No transitions from the ⁷F₂ level were observed. Eu³⁺ has the advantage that the ⁷F₀ ground state is not degenerate. This considerably simplifies the interpretation of the spectrum.

120 crystal-field levels were located and assigned, spanning 36 different SLJ multiplets. Since the crystal-field structure in the spectral region above 26 000 cm⁻¹ is rather congested,

initial assignments were limited to well isolated groups. After the first calculations progressively more levels could be assigned. Mainly in the 26000–27800 cm⁻¹ and in the 30000–35000 cm⁻¹ regions the manifolds of the different SLJ terms overlap and it is difficult to assign a single SLJ label to the levels, because of a strong violation of the Russell–Saunders coupling scheme. Not all calculated levels were observed because of low transition probabilities. Since for the higher wavenumbers only a few levels within an SLJ

Table 3. Calculated and observed energy levels (cm^{-1}) in LiYF₄:Eu³⁺ with assignments in D_{2d} and S₄ symmetry.

C.1.		$E_{\rm calc}$	Irrep.	$E_{\rm calc}$	Іпер.
SLJ	Ecxp	(D _{2d})	D _{2d}	(S4)	S4
7 _{F0}	0	0	Γι	0	Γı
⁷ F1	334	341	Γ_5	341	Г _{3.4}
⁷ F1	430	432	Γ_2	432	Γi
7 _{F2}	891	868	Γ4	869	Γ_2^{a}
${}^{7}F_{2}$	976	965	Γ_{5}	964	Г3,4
⁷ F ₂	1150	1164	Γ_3	1164	Γ_2^b
7 _{F2}	1172	1176	Γ ₁	1179	Γ
7 _{F3}	1859	1846	Γ_4	1845	Γ_2^a
⁷ F3	1873	1858	Γ_5^a	1858	$\Gamma_{3,4}^{\overline{a}}$
⁷ F3	1903	1881	Γ_2	1882	r _i
7F3	1951	1950	Гβ	1950	Γ_{34}^{b}
⁷ F3	2038	2032	Γ_3	2033	Γ_2^b
⁷ F4	2606	2590	Γ_1^2	2588	Γ_1^a
⁷ F4	2812	2787	Гŝ	2789	$\Gamma_{3,4}^{4}$
⁷ F4	2870	2865	Γ_2	2863	Г
⁷ F4	2905	2873	Γ_3	2874	$\Gamma_2^{\hat{a}}$
⁷ F4	2978	2966	Γ_4	2972	Γ ⁵ 2
⁷ F4	3013	3010	Гb	3011	Γ ⁶ _{3.4}
⁷ F4	_	3062	$\Gamma_1^{\tilde{b}}$	3061	Γ
7 _{F5}	3795	3765	Γ_4	3766	Γ_2^a
⁷ F5	3807	3778	Γ_5^a	3779	$\Gamma_{3,4}^{\overline{a}}$
⁷ F5	—	3821	Γ_2^a	3822	Γ_l^{a}
7 F 5	3998	3983	ΓĒ	3983	$\Gamma_{34}^{\dot{b}}$
⁷ F₅	4008	3992	Γ_1	3996	Г
7 _{F5}	_	3993	Гġ	3998	Γ¢
⁷ F ₅	4050	4047	ΓĘ	4050	Γ_{34}^{c}
7 _{F5}	4070	4069	Γ3	4069	Γ_2^b
7 _{F6}	4877	4873	Γ^{a}_{A}	4877	Γ_2^a
⁷ F6	4890	4881	$\Gamma_{5}^{\dot{a}}$	4884	$\Gamma_{3,4}^{\overline{a}}$
7 _{F6}	4891	4889	Γ_1^a	4892	Γ
⁷ F6		5031	Γ_2	5030	Γ ^b
⁷ F6	5076	5070	Гţ	5071	Γ ^b ₃₄
7 _{F6}	_	5109	$\Gamma_2^{\mathbf{n}}$	5110	L,
$^{7}F_{6}$	_	5118	гļ	5119	Γ
7 _{F6}	5129	5123	Γģ	5124	Γ_{34}^{c}
7F6	5200	5194	Г	5198	Γ
7 _{F6}	_	5195	$\Gamma_3^{\dot{b}}$	5199	$\Gamma_2^{\hat{d}}$
⁵ D0	17 270	17 289	Γı	17 289	Г ₁
⁵ D1	19018	19010	Γs	19011	Γ _{3,4}
DI	19040	19044	Γ_2	19 045	Γı

Table 3. (continued)

		E_{calc}	Ігтер.	$E_{\rm calc}$	Irrep.
SLJ	Eexp	(D _{2d})	D _{2d}	(S ₄)	S4
⁵ D ₂	21 454	21 438	Γ3	21 439	Γ_2^a
⁵ D ₂	21 490	21 468	Γ_1	21468	Γ_{I}
5D2	21 5 12	21 497	Γ_5	21 479	$\Gamma_{3,4}$
⁵ D ₂	21 540	21 508	Γ_4	21 508	Γ ^b ₂
⁵ D3	24320	24 338	Γ_5^a	24 338	$\Gamma_{3,4}^{a}$
⁵ D3	24349	24 348	Г2	24 349	Γ_1
⁵ D ₃	24351	24 351	Γ_3	24 349	Γ_2^a
⁵ D3	24 372	24 352	Γ_4	24 355	Γ_2^b
⁵ D3	24411	24 382	Γs	24 388	Г ^b 3,4
⁵ L6	24930	24 925	Γ_3^a	24 925	Γ_2^a
5L6	24937	24 940	Γå	24940	Γ_{14}^{a}
⁵ L6	_	24 953	Γ	24953	Γ_1^a
5LG		25 049	Γ_{4}^{a}	25,045	Γb
5LK	25 060	25 050	гş	25 046	Γŝ
⁵ L4	25 225	25 223	Γ	25 226	Γ ⁵ ,
514	25281	25 272	Г, Г,	25275	Г.
514	25 4 05	25 372	гр	25 370	F ^d
5L6	25 407	25 373	Γ	25 372	Γ_{2}^{2}
⁵ L ₆	25412	25 382	Γ_1^b	25 382	Γ ⁶ 1
⁵ L7	25 990	25 985	гª	25,986	Γ_{a}^{a}
5L7	_	25 988	Γ_2^4	25987	Γ
⁵ L7	25 9 90	25 989	Гź	25 988	Γ_{34}^{i}
5L7		25 994	Γ	25992	Гр
5L7	26050	26 069	Гį́	26 066	۲ŝ
⁵ G ₂	·	26 136	Γ_1	26137	Γ_1
5L7	<u> </u>	26 167	Γ_2^a	26 165	Γb
5L7	26174	26 182	ГÅ	26179	ΓŜ
5G2	26 194	26 203	Γ5	26204	Г3,4
⁵ L7	26304	26 293	Γ_5^c	26 292	Γ ^c 3.4
⁵ L7	. — -	26 303	Γb	26304	Γ_2^d
⁵ L7	<u> </u>	26 316	Γb	26314	Γ
⁵ L7	26373	26 356	Γđ	26358 [,]	Γ_{34}^{d}
⁵ G ₂		26 364	Γ_4	26366	Γ_{2}^{2}
⁵ G2		26 393	Г3	26 396	$\Gamma_2^{\tilde{b}}$
⁵ G3	26415	26 397	Γ3	26 397	Γ_2^a
⁵ G ₃	26 4 2 3	26405	Γ_5^a	26407	$\Gamma_{3.4}^{\tilde{a}}$
⁵ G3	· - ·	26448	Гд	26450	Γ ^b ₂
⁵ G3		26 458	Γ_2	26 457	$\overline{\Gamma_1}$
⁵ Gs	—	26 482	Γ_4	26485	Γ_2^a
°G4	<u> </u>	26 498	Γ_1^a	26499	Γ_{l}^{a}
Gs	· <u> </u>	26 503	Г	26500	Г _{3,4}
°G6		26 511	Γ_4^a	26512	Γ_2^a
°G3	26531	26 518	Гş	26518	Γ3,4
⁵ G4	_	26 527	Гр	26523	$\Gamma_1^{\mathfrak{b}}$
G6		26 544	Γ ₂	26 546	Γ <u>α</u>

Table 3. (continued)

·		F	Irron	F	
SLI	F.	വപ	пер. Dau	(S ₄)	S.
	~exp	(22)	1720		
°G4	_	26547	Γ_5^a	26 547	$\Gamma_{3,4}$
${}^{2}G_{4}$	—	26562	Γ_3	26561	Γ_2^0
°G5	26 555	26 563	Γ_{1}^{a}	26 5 6 3	Γ_1^a
°G6	26567	26566	Γ_5^a	26 566	$\Gamma^{a}_{3,4}$
⁵ G ₆	—	26 599	Γ_1^a	26 603	Γ_{1}^{a}
⁵G ₆	—	26616	Γ_4^b	26615	Γ_2^a
⁵ G₅	26 <i>5</i> 98	26 623	Γ_5^b	26 624	Г <mark>5</mark> 3.4
⁵ G6	26 631	26635	Γd	26639	Гр
⁵ G ₆	26 65 1	26 659	ΓÊ	26 658	Γ_{1A}^{b}
⁵ G₄	—	26 665	Гр	26 664	L.c.
5G.		26685		26 685	r ^b
5G6	_	26 693	Γ.	26 691	Γ
5G4		26 694	Γı	26 696	гį
5G6	26729	26702	- τ Γα	26705	гå
⁵ G ₅		26 709	Γŝ	26710	Γ ²
5G.		26733	ΓŶ	26733	179 179
5G6	26734	26752	ΓĘ	26753	F2,
5Gs		26764	Γ3	26766	Гþ
5 Gs	_	26774	гb	26774	Γ¢
5 _G ,	26786	26776	гþ	26780	rb.
	20100		^ 5		- 3,4
⁵ L8	_	26 978-27 329		26980-27331	
SD.	27595	27 590	F ²	27 592	T-a
5D.	27505	27 505		27 596	
5D.	27001	27 511	15 To	27.611	- 3,4 Г ^а
5D.		27011	13 E.	27617	* 2 r b
5D.	27 625	27017	14 T-	27676	1 2 r•b
5D.	27627	27 624	12 rb	27 620	r i
ຳມ ₄ ໂກ	27027	27 027	15 mb	21023	3,4
- D4		27050	ΤĨ	27031	1 ĵ
51.0		27 663-28 090	_	27 665-28 088	
5Lin	_	28 102-28 671	_	28 108-28 670	
010		20102-20071		20100-20070	
5H3	_	30 645	Γ_3	30644	Γå
5H3	<u> </u>	30 696	Γå	30 698	Γ ^a
⁵ H ₃		30758	Гđ	30760	Γ ₁
SH7	_	30785	Γ	30782	Гþ
5 _{H7}	30813	30 803	$\Gamma_{2}^{\frac{1}{2}}$	30 805	Γ_{i}^{2}
⁵ H ₇		30 807	Γ	30 809	Γ ¹
5 _{H7}		30 829	Γ_2^a	30 833	La La
5H2	30 831	30 852	Γ	30853	Г ^Б ́,
5H-	30.897	30 896	- 5 Γ1	30 896	F.
5H-	30 898	30.910	Гþ	30 909	гр.
5 ₁₁ _	30 6/6	30.036	►5 гр	30.936	^ 3,4 ୮ ⁻ b
5117 5117-	20 002	30.058	- 4 170	30.956	12 TC
5H	30 273	31 040	13	31 044	
5m		31 123	^ 5 ୮ ^b	31 124	- 3,4 T-2
511.	—	21 122	- 5 17a	21 122	- 3,4 r-a
- 124		31 155	_ ¹ ī	31 133	- i

Crystal-field analysis of Eu^{3+} in $LiYF_4$

Table 3. (continued)

÷ -	· .	Ecale	Іптер.	$E_{\rm calc}$	Іттер.
SLJ	Eexp	(D _{2d})	D_{2d}	(S4)	S4
5H7 .		31 141	Γ ^b	31 141	Γ ^d
⁵ H7		31 141	гţ	31 144	Γį
⁵ H7	31 169	31 179	Гą́	31 181	Γd
⁵ H4	31 177	31 194	Γ_4	31 195	Γ_2^2
⁵ H ₄	_	31 229	Γ_2	31 228	Γ ^δ
⁵ H4	_	31 229	Γ3	31 230	ГĴ
⁵ H4	31 261	31 233	гţ	31 233	Γ ^b
⁵ H4		31 249	Γ_1^b	31 249	Γ_1^c
⁵ H5		31 322	Γ_5^a	31 323	$\Gamma^{a}_{3.4}$
⁵ H₅		31 329	Гз.	31 331	Γ_2^1
⁵ H ₅	 · ·	31 336	Γ_2^a	31 335 👉	Γ_1^a
⁵ H ₆		31 348	Γ_1	31 351	Γ_1^a
°H ₆	31 358	31351	Γ_5^a -	31 352	$\Gamma_{3,4}^{a}$
PH6	<u> </u>	31 362	Γ_4^a	31 364	Γ_2^a
°H₅	31 403	31 400	Γ_5^0	31 400	Г _{3,4}
SH6		31 422	Γ_2	31 422	Γı
°H5		31 423	Γ_1	31 423	Г
⁵ H ₆	<u> </u>	31 439	$\Gamma_4^{\rm b}$	31 440	Г2
°H6	·	31 489	Г <u></u>	31 490	Г _{3,4}
°H ₆		31 499	Γ3	31 501	Γ_2^c
³ H ₅	31 550	31 553	Γš.	31 355	1 ⁻⁵ ,4
⁹ H ₆	—	31 570	Г <u>з</u>	31 571	Γ_2^{u}
³ H5		31,583	1°2.	31584	11
°H5 Su	<u> </u>	31 590	Γ_4	31 592	
°п. 5щ.	31,608	31 607	L] F ^C	31 608	
110	51000	, 51.001	* 5	51000	- 3,4
⁵ F ₃	—	32 875	Γ_3	32874	Γ_2^a
³ P ₀		32 886	Γ_1	32 889	Γ_1
JF2		32 896	Γ4 :	32 897	Γ_2^*
5 F2	<u> </u>	32,942	15.	32,942	13,4 L''a
5173 5177		22,000	ч ₅ . Г	22 011	¹ 3,4
5 E.		33 003	г <u>г</u>	33 033	г] гр
50	22.020	22:029	13 mb	33 023	г <u>2</u> гр
-13 510	35 020	22 040	15 É.	22 041	13,4
- F3 515.	22 102	22 117	12 E	22119	г) гр
1.3	55102	55117	14	55116	12
⁵ F1	33 270	33 274	Γ_2	33 275	Γι
⁵ F 1	33 301	33 279	Γ_5	33 280	Γ _{3,4}
⁵ F4	· <u> </u>	33 378	Γ_{1}^{a}	33 378	Γ_1^a
⁵ F ₄	33 512	33 4 18	Γ_4	33 4 19	Γ <mark>a</mark>
°F₄	33 517	33 426	Γ_5^a	33 428	Γ ^a 3.4
°F4		- 33 433	Γ ₂	33 434	. Γ
°F4	—	33457	Γ_3	33 460	Γp
⁵ F4	33 563	33 470	Γ_5^{b}	33 471	Г ^ь 3,4
⁵ F ₄	. —	33 490	Γ ^b	33 491	Γi

Table 3	3. (continued)
---------	------	------------

-		$E_{\rm calc}$	Іптер.	$E_{\rm calc}$	Irrep.
SLJ	E_{exp}	(D _{2d})	D_{2d}	(S ₄)	S4
⁵ I4	_	33 861	Γ_1^a	33 860	Γ_1^a
⁵ F ₅	_	33 886	$\Gamma_2^{\frac{1}{2}}$	33 886	$\Gamma_1^{\hat{a}}$
⁵ F5	—	33 896	Гŝ	33 896	$\Gamma_{3.4}^{\hat{a}}$
⁵ Fs	_	33 897	Г4	33 897	Γ_2^a
⁵ L	_	33 898	Γ_3	33 897	$\Gamma_2^{\tilde{a}}$
⁵ F5	33 927	33 9 1 9	Гţ	33 920	$\Gamma_{34}^{\tilde{b}}$
⁵ F5	_	33 9 <u>3</u> 3	Γı	33 934	Γ ^b
⁵ F ₅	_	33 935	Г3	33 935	Γģ
⁵ Fs		33 942	Γb	33 944	rî
⁵ F5	33 957	33944	ΓĘ́	33945	Γŝ
⁵ I4	33 980	33 967	Гį	33 968	Γ_{3}^{a}
514	_	33,992	Γ2	33 992	Γ_{i}^{b}
54	34019	34 009	Γ ^ρ	34011	Г ¹ .
5L		34047	Γ,	34047	Γ ^b
5 I		34 081	Γþ	34 084	Γ°
⁵ I5	<u> </u>	34 203-34 451		34 20434 452	•
5r		24 722	C ^a	24 722	⊤ a
-18 5τ.	_	34735 34740		34735 34740	² Г ^а
ла 5 г.	_	34 740	* 5 ra	34743	- 3,4 ra
51 <u>6</u>	_	34 754	- 1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	34755	- і тр
18 57.	24702	24 775	* 3 rb	24 776	* <u>2</u> 170
5r.	24 920	34 797	15 Ta	34 797	- 3,4 ⊤ª
-16 5т	34 829	24 707	15 178	34 101 24 707	1 3,4 172
- 18 5 r		34 707	1 2 1 2	34 700	т Г
~18 5т.	—	34 /97	l î ra	34 199	
16 51-	_	34 856	- 4 Г-	34 854	* 2 Гр
51,	31865	34 858	г <u>р</u>	34958	τ ^b .
то 5 То	5+005	34 902	- 5 ۳ ⁶	34 906	* 3,4 mc
ла 5т.	34 877	34 905	- 1 1-1-	34 906	• 1 • rb
⁴⁰ 5то	54077	34 936	- 3 rb	34937	rd rd
-ха 5 Го	34.922	34 930	г <u>1</u> Г9	34 940	Γ ² .
57 57		34 958	- 5 FD	34 957	- 3,4 Г ^С
5T.	_	34976	•4 Г ^р	34 978	12 Г°
510		34976	^ 3 Г ⁰	34.982	* 2 rd
-х 5т_	_	34070	-4 Г ^d	34.087	2
-a 510	_	34.007	* 5 Г°	34 000	• 3,4 Г°
τ8 5τ.	25 027	35012	1	35 013	1 rd
¹⁶ 5γ.	JJ 021	35012	13 Г	35015	Γ ² .
5 5 1		35 026	Γ ^b	35 027	- 3,4 Г
-0 6			- 1		- 1
5 k7 5 kr	— ·	35 219-35 506		35 221-35 507	
5 K.5	_	50 UU / 50 259 27 154, 27 252		30 UU / - 30 Z39 27 154 - 27 254	
5K~_3p.		38 072-38 240	_	38073-38250	
5G2		38 462-38 490		38462-38490	_
5K8	_	38 553-38 662		38 556-38 662	_

multiplet were observed, it was not possible to determine their barycentres. Some additional

Parameter	D_{2d}		S 4	
F ²		82210±9		
F^4		59154 ± 19		
F^6		43090 ± 11		
α		21 ± 1	,	
β		-554 ± 10		
γ		1326 ± 8		
T^2	· · ·	370 ± 3	а. С	
T^3		(40)		
T ⁴	·····	(40)		
T ⁶		-300 ± 28		
T^7		(370)		
T ⁸		(370)		
ζ.		1330 ± 1		÷.,
M^0		2.416 ± 0.046		
M^2		1.353	-	
M^4	-	0.918		
P ²		307 ± 10		
P ⁴		229		
P ⁶		153		
B_{0}^{2}	349 ± 23		348 ± 23	۰.
B_0^4	-749 ± 32	· - •	-775 ± 32	
B6	-93 ± 46	· .	-80 ± 46	
B ⁴	-1054 ± 22		-1045 ± 21	
-4 B ⁶	-778 + 29	· -	-772 ± 31	
-4 7 R ⁴			25 ± 20	
+~4 + 26			180 ± 40	
·~4			100 1 40	

Table 4. Energy parameters (in cm⁻¹) for the $4f^6$ electronic configuration of LiYF₄:Eu³⁺ in D_{2d} and S_4 symmetry.

peaks in the spectra turned out to be caused by holmium impurities in $LiYF_4:Eu^{3+}$. In the UV region the Eu^{3+} peaks are superimposed on a broad oscillating background signal. The transitions observed are given in table 2. They are labelled according to the largest SLJ components. When a peak was found at both temperatures or in different polarizations at slightly shifted wavenumbers, an average value is reported. Thus contingent temperature dependence of the lines due to a changing of the crystal field by thermal expansion or contraction of the crystal lattice is neglected.

Most transitions are predominantly ED in character. This is also evident from the nearly identical α and σ polarized spectra. A few transitions occur by a nearly pure MD mechanism, e.g. ${}^{5}D_{1} \leftarrow {}^{7}F_{0}$, ${}^{5}D_{1} \leftarrow {}^{7}F_{1}$, ${}^{5}D_{2} \leftarrow {}^{7}F_{1}$ and ${}^{5}F_{1} \leftarrow {}^{7}F_{1}$. All transitions from the Γ_{1} ground state to Γ_{3} (D_{2d} labelling) have a low intensity. Such transitions are allowed in S₄, but not by the selection rules in D_{2d} symmetry. Spectral transitions with $\Delta J \neq 0$, 1, 2, 4, 6 are forbidden both by MD and by induced-ED selection rules. Due to J mixing these transitions become allowed but they have very low transition probabilities. This partly explains why in the higher-energy regions few levels are found experimentally in comparison to the large number expected theoretically. It follows from the selection rules that experimental evidence for Γ_{1} , Γ_{2} and Γ_{3} levels (in D_{2d}) can only be acquired from transitions starting from the ${}^{7}F_{1}$ level. Most observed levels belong therefore to the Γ_{4} and Γ_{5} irreducible representations.

The parameters in [4], which were calculated with a strongly reduced basis of the 49 7 F crystal-field levels, cannot accurately describe the wavefunctions of levels higher than 5 D₁.

Figure 3. Polarized absorption spectra of ${}^{5}L_{6} \leftarrow {}^{7}F_{0,1}$ in LiYF4:Eu³⁺ at room temperature.

The standard deviations σ of our present fit of calculated against experimental energy levels is ~ 14 cm⁻¹. The number of available experimental barycentres was insufficient to vary all free-ion parameters independently. The repulsion parameters are difficult to determine accurately because most observed levels lie within F and D multiplets. Starting parameters for the free ion were chosen from Eu^{3+} in another host crystal (EuODA) [16]; the starting crystal-field parameters came from [4]. J-mixing effects have been taken into account. The P^k and M^k values were constrained according to the relationships $P^4/P^2 = 0.75$, $P^6/P^2 = 0.5$, $M^2/M^0 = 0.56$ and $M^4/M^0 = 0.38$. Finally, the crystal-field parameters were determined (D_{2d} and S₄). For the S₄ calculations the free-ion parameters of D_{2d} were retained, since the S₄ distortion is small. Moreover a variation of the free-ion parameters for S₄ did not result in a better fit.

The calculated and observed energy levels are listed in table 3. Not all levels calculated in the high-energy range are given, because this would make the table too lengthy (more than 300 levels were calculated for Eu^{3+} in the 0-39 000 cm⁻¹ spectral region). The agreement between theory and experiment is in general fairly good. A great discrepancy, however, was found for the transitions to ${}^{5}F_{4}$. These levels were excluded from the fit. A distinction (in D_{2d}) between the irreducible representations Γ_{1} and Γ_{2} on one hand and between Γ_{3} and Γ_{4} on the other hand was based on the symmetry of the largest components of the wavefunctions.

The D_{2d} and S_4 parameters are given in table 4. The splitting of the crystal-field levels is rather insensitive to a variation of the imaginary crystal-field parameters in S_4 .

7. Conclusions

The polarized absorption spectra of LiYF₄:Eu³⁺ were investigated in the near IR, the visible and the UV spectral regions (3900–39000 cm⁻¹) at 298 K and at 77 K. In combination with earlier published fluorescence results [4] a wide range of the 4f⁶ electronic configurations of Eu³⁺ could be calculated. Assignments were made in D_{2d} and S₄ symmetry. It has been shown that the actual S₄ symmetry is fairly well approximated by the D_{2d} symmetry.

Acknowledgments

We wish to thank I Laursen (DTH, Lyngby, Denmark) for growing the LiYF₄: Eu^{3+} single crystals and Mrs H Crosswhite (ANL, Argonne, IL, USA) for developing the programs that are used in simulating the energy-level scheme. One of us (KB) is indebted to the NFWO (Belgium) for financial support (aspirant-NFWO). The Belgian Government is also gratefully acknowledged (Programmatie van het Wetenschapsbeleid).

References

- [1] Shand W A 1969 J. Cryst. Growth 5 143
- Morrison A and Leavitt R P 1982 Handbook on the Physics and Chemistry of Rare Earths vol 5 (Amsterdam: Elsevier) p 625
- [3] Jayasankar C K, Reid M F and Richardson F S 1989 Phys. Status Solidi b 155 559
- [4] Görlier-Walrand C, Behets M, Porcher P, Moune-Minn O K and Laursen I 1985 Inorg. Chim. Acta 109 83
- [5] Görlier-Walrand C, Behets M, Porcher P and Carnall W T 1986 J. Less-Common. Met. 126 271
- [6] Bihari B, Sharma K K and Erickson L E 1990 J. Phys.: Condens. Matter 2 5703
- [7] Laursen I and Holmes H 1974 J. Phys. C: Solid State Phys. 7 3765
- [8] Thoma R E, Weaver C F, Friedman H A, Insley H, Harris L A and Yakel H A 1961 J. Phys. Chem. 65 1096
- [9] Wyckoff R W G 1960 Crystal Structures vol III (New York: Interscience)
- [10] Vishwamittar and Purri S P 1974 J. Phys. C: Solid State Phys. 7 1337

8374 C Görller-Walrand et al

- [11] Urland W 1981 Chem. Phys. Lett. 77 58
- [12] Koster G F, Dimnock J O, Wheeler R G and Statz H 1963 Properties of the Thirty-Two Point Groups (Cambridge, MA: MIT Press)
- [13] Crosswhite H M and Crosswhite H 1984 J. Opt. Soc. Am. B 1 246
- [14] Carnall W T, Goodman G L, Rajnak K and Rana R S 1989 J. Chem. Phys. 90 3443
 [15] Wybourne B G 1965 Spectroscopic Properties of Rare Earths (New York: Interscience)
- [16] Berry M T, Schwieters C and Richardson F 1988 Chem. Phys. 122 105